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wi~ the ~ m e ~  aiffere~t i~topic ~ins as t h e  
ground state L e. from states with T = T O and T = 
T o + I, To + 2. H A is the mean excitation energy 
of states in A, as defined by: 

I~nol 2 = g'2 ~ <nlVc 10>2 
n 

and ~f g' is the s imi l a r  quanti~y for s t a tes  with 
T ~ To, it is easy  to show that: 

,4 = A'=(<0I V~ c 10> -,~01Vc 10> 2) , 

,4, <[(,~ To -, ~) ea ] ' l  <O!Vc(Z~,Vc]l o>. 

We ha~e computed the three matrix elements 
using Fermi gas wave-functions, ignoring space 
exchange, as previously described by MacDonald 1). 
Using MacDona~d*s numerical expressions for the 
space integrals: 

25 ~ A =$(~ (0.t}17 Z + 0.37) (_~_)2 

A' < 2(N - Z + 2) "1 (~,)2 , 

where Ac is the Coulomb energy of a proton in the 
nucleus (6ZeZ/§R, R being tt~e radius). There is no 
evident reason why A should l~e much larger than 
~. so we conclude that A may be ~ I and that states 
of T = T o may be st :ongly mixed into the ground 
state. The quantity A' must be greater than the 
energy needed to excite the lowest state of T = 

I April  1962 

(T O + i), which, on the stability line, equal to ~ 
Thus: 

A' << 2(N - Z + 2) "I , 

so tha~ the mixing Lu of states with I" ~ T o is very 
small, and isoto~ic spin is a quite pure quantum 
number. 

This result, ,~,hile surprising at first sight, is 
of very little practical significance. What it says 
is that the stron~ mixing in the self-conjugate core 
(N = Z) of a heavy nucleus is considerably diluted 
by the addition ~,~' the excess (N - Z) neutrons 
(which are, of course, in a p~-e isotopic spin 
state). Thus the :isotopic spin purity of the whole 
nucleus is a rather empty result, and indicates that 
isotopic spin is ~ot a very significant quantum num- 
ber. This ie confirmed by the fact that it is not 
possible to devi~e any experiments to really test 
isotopic spin purity as such in heavy nuclei. The 
best that can be :lone is to test isobar correspon- 
dence between immediately neighbouring nucle~ 
as has been done in the recent (p,n) studies ~, oi 
from Livermore. As already pointed out 4) this 
does not in itself imply anything directly about 
isotopic spin purity. 
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In a preceding paper I) it has been shown that 
the sum over all the ladder diagrams of fig, I 
(compatible with kinematics) with just low energies 
cross-sections at any vertex, is an approximate 
solution of the strip approach to the Mandel~tam 
representation 2) of the elastic amplitude. 

In the same paper, it was suggested that the 
same model could be used for the evaKmtion of the 
inelastic processes. In fact, the model proposed is 
a simple extension to higher energies of the peri- 
pheral model 3) whose soundness in the GeV region 

* And Istituto dl Fls ica,  UniversiO di Torino,  Italy. 

has been recently well established 4) The model 
in question, ,fl~ose details shall be presented and 
investigated J.n a forthcoming publicatiov 5), con- 

Fig. 1. Fig. 2. 
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Vohsme 1, member 1 
~ , . = ~  . . . .  u , -  - - , . , , . ,  , 

mats  in a s e r i e s  of e l ementm~ p e r i p h e r a l  produc-  
t ions of low energy  sys t ems  ( - m ~ t i c e n t r e "  graphs 
of fig. 2). 

The number  of those, sys tems  is limited, for 
every i n c i d e ~  e n e r g y  s ,  by p h a s e - s p a c e  and by the 
er~rgy d e v o ~ o r s  given by the pion p, ropagators .  
At any e~:x~y the descr ip t ion of the en t i re  p rocess  
shall ~ e r e [ o r e  be given by a finite sum over  mult i -  
cent re  d i ag rams .  

The method used to sum th is  ser~es  is to make 
urn: of a r e c u r r e n c e  formula in o rde r  to obtain an 
integral equation for  the whole absorp t ive  s c a t t e r -  
ing amplitude. F r o m  the solution of th i s  integral  
equation for  ze ro  t r a n s f e r  momentum (t = 0) we a r e  
able to obtain the predict ion of our  model  for  total  
c ro s s - sec t i o~s  a s  well as  the main p r o p e r t i e s  of 
inelastic coll islon~, s~ spect ra  and mult ipl ici ty of 
seccmdaries. The solutic~-~ for t ~ 0 al lows us to in- 
vestigate ~e diffractive eDstic scattering and gives 
us a relativistic fiel0 theo,'etical way to understand 
the re1~flon b~tween asymptotic  behaviours  of a m -  
plitude~ and exister/ce of bound s t a t e s  or resonav,,,- 
c es. We shall collect in this note the main predlc- 
fleas of our theoretical model for the asymptotic 
~aviours of both inelastic and elastic scattering 
leavm~ the details and criticism to the forthcoming 

r..~q~e r ~,. 

1. Asymptotic properties of inelastic scattering 

a. Total c ross -sec t ions  behave 

~(s) = s : ~ ' 1  ~1) 
J 

where s is the square  of the total  energy .  The ac-  
~,u~l value o~ :-o is  given by the theory  f rom a solu- 
rio11 of an eigenvalue problem of a l inear  integral  
eqt:~,t!on 6): as  a resu l t ,  it is given in t e r m s  of 
:o~:-energy phys ics  (mainly an in tegra l  over  low- 
em,:rgy ~ c ross - sec t ion) .  Our l i t t le  knowledge on 
- -  ~ ross - sec t ions  does not allow for  an actual eva- 
Iuat~on: ;he value ~o = 1 (constant to ta l  c r o s s - s e c -  
tions) s ~ m s  to be however quite compatible  with 
present low-energy  -~ exper imenta l  evidence. 

b. Value of total  c ros s - sec t ions .  Fixing as = 1, 
t,ue eiger~unction oi ".he integral  equation previously 
mentioned al lows the calculation of ti=e actual value 
of total c r o s s - s e c t i o n s  by means  of a non- l 'near  r e -  

Tais calcul~tion involves again only low-ener~y 
pb',sics but, con t ra r i ly  to the value of as, it is not 
only sensi t ive to integrated low-energ7 crc~ss-sec- 
lions, bW~ al~o to the s t ruc ture  of it (energy o~ 
resonances).  Using reasonable va lues  of cv~. at tow 
ener~/ .  . . . .  we o ~ a i n  too b,:~ high-,:ner~ cr~ss-s_..o~- 
hons (1~:¢ a fac tor  around l!ive ,, ' ,,-n} as  compared 
~o experimental values. Our modol indicates, how- 
~:,'e:. that a more  refined se l f - c~ ) , ,~ t en t  ca!cula- 
ti~n should be done in order to calc,,~!ate *.he cross- 
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sections. This refinement, whose characteristics 
we shall discuss later in thin note, tends t.o remove 
the above-mentioned discrl~pancy. Contrarily to the 
calculation of actual numbers, the trends and ener- 
gy behaviours shall not be modified by the refine- 
ments of the model. 

c. Nature of secondaries.  The secondaries are 
mainly pions. K mesons,  and other particles can 
also be. emitted with rates that can be easi ly eva- 
lusted for each particular case. 

d. Multiplicity. The multiplicity of ~econdaries 
predicted by our model grows logarithmically with 
the energy. 

e. Spectra of secondaries.  1. Spectra of trans- 
verse  momentum. These  spectra, as calculated 
from the theory, turn out to be independe~ of the 
incident energy as well  as independent of the longi- 
tudinal momentum of the secondary itself *. The 
width of the spectra i s  characteristically a low- 
energy quantity. 2. Spectra of secondary energies.  
These  turn outto  be given by dElab/£11tb (where 
Ela b ts the energy of the secondary in the lab. sys-  
tem) independently of the incident energy (except 
obviously for the fact that the maximum value of 
Ela b increases with the incident energy). 

2. Asymptotic properties of elastic amplitudes 

The absorptive part of the elastic amplitude 
A(s, t) is  given in our theory by the sum over all 
graphs represented by fig. 1. t stands for the 
squ2.re invariant transfer momentum, whose value 
is negative in the phys ica l  scat ter ing region (dif- 
fractive region). The asymptot ic  behaviour of 
A(s, t ) as  given by solving our theory is  

~ ( s ,  t)  = c O )  s ~(t) , (2) 
where ~(t) I~ again given t~,an eigenvalue condition 
in a solution of a linear homogeneous integral equa- 
tion 7). Again ~(') is given in terms of low-en~.rgy 
~,~ cross-section~.  For the absolute elastic proces- 
ses  (no charge exchange,  no spin flip) ~(0) = c. o of 
eq. (1). For  charge  exchange ampli tudes  c~.~)ch ' < o o 
.~ s a resul t  of our eigen_¥alue problem. 

As a mat ter  of fact rIJ 

dc.(t)/dt > 0 , (3) 

and lira c~(t) = - i . 

Besi:les, the application of unitarlty ( n the s chan- 
nel) limit~ 

c,(t) ~ I ~or all t .~ 0 . (4) 

Using fixed momentum transfer dispersion relat,on~ 
and using (2) one can obtain the following ac~ympto- 

* "rhes~,~ properties seem to be in good agreement with 
present experimental information (see for instance G. 
Cocconi. 1961 meeting of Argonne Accelerator User~ 
Group). 
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t ic behaviour of the whole scat ter ing ampli tude 
T(s, t) 

T(s, t) = s:(t) c (t) [cotg ~ )  2 - + i] (5a) 

for symmetric amplitudes under crossing s--- • as 
for Instance absolute elastic scattering (in which 
there is no exchange or quantum number between 
the scattering particles) 

aCt) i] (§b) T{s, t) -- s:(t) C(t) [tan ~ +  

for ant tsymmetr tc  ampl i tudes  under c ross ing  
S ---.  g .  

F r o m  eqs. (5) the e las t ic  scat ter ing c r o s s - s e c -  
t ions  can easily be calculated.  We find the following 
p roper t i e s  
a. Fo r  the absolut ~. e las t ic  p rocesses ,  for  which 

c(0) = 1, the forward amplitude is  asymptot ical ly 
lmmginary In the forward  direct ion and develops 
a r ea l  part  for lncreaS/ng angle. Due to (3) the 
e las t ic  c ro s s - s ec t i on  dec rea se s  as  (log s ) ' l ;  in 
o thsr  word | ,  the dH/ract ion peak is  predic ted  to 
dec rease  logari thmical ly.  

b. Fo r  charge exchange elast ic  p r o c e s s e s  (~(0) < 1) 
the c ros s - sec t ions  d e c r e a s e  as  (s(1"~(0)) log s) "1. 
In this case the forward amplitudes contain a rea l  
par t .  
The equations obtained could well be considered 

also for the unphysical case  t > 0. For  t > 4 ~2, 
c(t) would develop an imaginary par t .  We see from 
eqs.  (Sa) or (Sb) that any t ime = passes  through an 
even (odd) integer T(s, t) develops a pole. We know 
f rom S matrix theory that  this means the exis tence 
of a bound state for that  par t icular  value of t {or 
resonance if ~ has a lso  an imaginary part) .  Polo- 
fogy te l l s  us also that  the  angular momentum of 
such a bound state is  Just the ent ire  value of c~ in 
question. These poles  (i. e., the re la t ion between 
bound states and asymptot ic  proper t ies  of elast ic  
scat ter ing)  have beer, found f i rs t  by Regge 8) m po-  
t en t la l  SchrSdlnger theory and have been tmetsed 
recent ly  to be of more general  cha rac t e r  ~).  These 
poles ,  that appear explicit ly in eqs. (5), have here  
as  a ground a field theore t ica l  model wt, lch h~ s the 
chax ac ter l s t lcs :  
1. to be re la t ivis t ic ,  
2. to sat isf! ,  at least  par t ia l ly ,  c ross ing  and ,--i- 

tary ,  
3. to state clear ly the relat ion between a pole !n 

the real  part  of the amplitude and the asympto-  
tic energy dependen,,e of both rea l  and imagin-  
ary part r ,  

4. to glve simuRaneously the proper t i e s  of inelas-  
tic scat ter ing that seem to be In r a the r  good 
agreement  with exper imenta l  evidence. 
It would be a legi t imate question to ask whether 

it would t ~ oossible to obtain the condition for a 

bound s ta te  n~t through the poles  of the $ matr ix but 
by a d i rec t  calculation of a re la t iv is t ic  bound state 
problem. The affirmative answer  comes from the 
following resul t  6,7,8) obtained by analyzing the 
Bethe-Salpe ter  equation in the ladder zpproxima- 
t ion ( represen ted  again by the  graphs  of fig. 1. Th~ 
condition for  the existence of a bound state with 
total  square  energy t B and angular  momentum l is 
identical with the condition that  our eigenvalue prob-  
" :m d i scussed  before has  a solution for ~-(t B) = l. 

3. Cuts in the ans~a¢ momentum 

• The s imple version of the mult icentre model 
developed up to now contains the assumption that 
the main contribution to total  c ros s - sec t ions  shall 
be given by purely inelastic effects.  Even if we 
know that the pure elastic (dffractive) scat ter ing 
shall  d e c r e a s e  logari thmically with the energy if 
compared to the inelastic one, there  shall be mixed 
diffractive and inelastic effects ,  as the one r ep re -  
sented in fig. 3, whose importance was already 
pointed out in per ipheral  calculat ions 10). 

d ~ f f r Q c U o n  

i 
/ 

Fig. 3. 

Diffraction, however, is a result of the same 
model, therefore a self-consistent solutioP of the 
whole elastic a,._' inelastic problem can be attempt- 
ed. 

in fact, in this treatment, the elastic diffractive 
sca t te r ing  shah not ~nly be given by the d iagrams  
of fig. I but also by those of fig. 4 in which di f f rac-  
tion i tself  appears .  

di f fmct io~ 

Fig.  4a. 

diffroctlor~ ---~ / / /  / 

Fig .  4b. 
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,~ ~ m ~  ~ ~ s  of t b l s  

-,:,,~, ~ : ~  ~ s y .  t o  w e e ,  ~ % ( 0 )  

.: ~:..~, ~, , : ~',,,~ r ,'. ~ .  ....... ='C ~ a  r a ~ i ~  ~ t h e  Io~:a- 
. -.., ,, .-~ ~,~.. ...... ..;: :: ::,. : >  ~ 7 ~  .~=c,~-'~ the cul c o r ~ r i l ~ t i o n .  

. . . . .  , : > C..-'~'~ ~" : . r : : e  ~:~¢~t:~g ~,he t h e o r e t i c a l  iden-  
, ~,:, ~ ~, ~ :  :,, , - ~ c 4 ~ . ~ . ~ : : C - e ~  C~'~ t : ~ e ~  C ' ~ :  0",1I" Irrl- 

"t::<: ,;~::~: :,~. = ~ " - "  . . . . . . . . . . .  r ~ ~tlon b e t w e e n  a syrnp-  

T h e  cmly m e a n i n g  of such  a ghos t  i s  t o  w a r n  
p h y s i c i s t s  to d i s b e l i e v e  a ny  t h e o r y u p  t o  ~tlues o! t 
where  it appears. In s o m e  papers 11) the hope was 
e x p r e s s e d  tha t  C (t B) w oul d  in  some  way v a n i s h ,  but 
this is an ~cl hoe hope th~ - in our point of view - 
can last m~ Io~ as one has nora method t o  e~tlcul~e 

a calculable [u~ctloa that ~Ioes, not show any c b . ~ c e  
to act  as  ghost k i l l er .  Our impress ion  i s  that for 
p c ~ r ~ m l s  so good a~ to satiMy the ~ e g g e  conditions: 
- or as  in o~r ladder theory,  finite m a s s  s c a l a r  In- 
teract ions  - there i s  no hope to avoid t h e  ghost  and 
s/mullaneously have cormtant total c r o s s - s e c t i o n s  
(=~0) = I). This  hope c a n  p e r h a p s  be a c h i e v e d  by 
a l l o w h ~  f o r  l e s s  r e s t r i c t i v e  , ~ t e n t i a l s "  * ;  l n a n y  
c a s e  t h i s  i s  a s u b j e c t  wc  h a v e  s t i l l  u n d e r  i n v e s t i g a -  
t i o n  whose solution, however ,  we need in o r d e r  to 
trust  (mr model,  not only for calculating propert ies  
of inelastic co l l i s ions  and diffraction propert ies ,  
~ t  to push it st i l l  further so as  to calculate m a s s e s  
and propert ies  of bound s tates  or resonances .  
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~he Ofl[crence of our ~ (- 0o) = - I and the - ~ limit o~ 
~.e~ge 8) can be understood i~ terms of the difference 
o[ structur~ between the relativis'tio Bethe-Salveter  
equation and the S c h r ~ i n g e r  potential equation. Be- 
sides, bohh these resu l t s  depend on the proper t ies  of 
the potentials for very small distances or, in our lan- 
guage, in ~e way in which hig~ masses appear in any 
~ink of the multiceutre chain of owr model. 


